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Notch-sensitivity of non-linear materials 
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The relationships between breaking stress, ~B, and crack length, a, and between breaking 
strain, sB, and a have been calculated for materials whose stress-strain behaviour is 
approximated by ~ = k8 n. The results take the form OBOC (a)-m and sBoc (a)-P, where 
m = n / ( n + l )  a n d p = l / ( n + l ) .  F o r n = l  (the linear case), m =  p = l .  F o r n > l ,  
m >�89 > p and for n < 1, m < � 8 9  p. Tests on butyl, silicone and latex rubbers as model 
materials confirm the applicability of the theory. The results imply that for biological materials 
such as skin where n > 1, ~B drops off very rapidly with increasing defect size, whereas eB is 
far less dependent on a. These may be appropriate properties for a material where the degree 
of extension, rather than the peak loads encountered, is critical to its in vivo performance. For 
materials where n < 1, breaking stress is far less sensitive to crack length than fracture strain, 
which may be more appropriate properties for applications in which applied stress, but not 
strain, is critical. 

1. In troduct ion  
In considering the toughness of highly extensible bio- 
logical materials such as blood vessels and skin, 
Gordon [1, 2] raised the general question of the effects 
of a non-linear stress-strain relationship on the frac- 
ture behaviour of a material. He argued that materials 
showing low stiffness at low extensions followed by 
high stiffness at high extensions would have poor 
shear communication of energy to a growing crack, 
resulting in a greater resistance to fracture despite the 
moderately low works of fracture that have been 
measured for such biological materials [3, 4]. 

Gordon's ideas were purely descriptive, but several 
workers have since analysed theoretical models of the 
fracture behaviour of non-linear materials. Smith 
[5-7] has used discrete lattice network models to 
predict that fracture strains [-5, 6] and effective works 
of fracture [7] are higher if the stiffness of lattice 
elements increases at higher extensions than if they are 
linearly elastic. Kendall and Fuller [8] and Mai and 
Atkins [-9] have analysed the effects of non-linear 
elasticity on the fracture behaviour of uniform, isotro- 
pic materials. Both of these papers assume the simple 
form of non-linear stress-strain relationship shown in 
Fig. 1; the power-law model, where o = ke". Such a 
model has been used to describe approximately the 
stress-strain curve of tendon and skin [10], and al- 
though it gives a far from perfect fit to the behaviour of 
many extensible materials, it does broadly mimic the 
whole range of non-linear curve shapes seen, from the 
r-shaped curve of many rubbers to the J-shaped case 
typical of biological membranes, by a simple change in 
the exponent n.  For n < l, the stress strain curve is 
r-shaped, for n > 1 it is J-shaped, whilst n = 1 yields 
the linear case. 
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Figure 1 The power-law stress-strain model; cy = ke". 

Kendall and Fuller [8] analysed the effect of non- 
linear elasticity on the behaviour of a material in 
various crack propagation tests. For the trousers tear 
test and a lubricated cutting test they argue that the 
shape of the stress-strain curve has little, if any, effect 
on the rupture stress, and that in tensile single-edge 
notch tests the shape of the stress-strain curve affects 
the fracture stress by only a small amount. They 
conclude that it is not generally true that materials 
with J-shaped curves are more resistant to fracture. 
Kendall and Fuller raise an important point by ques- 
tioning the criterion by which the fracture resistance of 
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non-linear materials should be judged. They rightly 
point out that if biological materials are judged by 
work of fracture-type measurements, then their tough- 
ness is not particularly great; fracture toughness, R 
(the specific work of fracture as defined by Atkins and 
Mai [11]), is only in the range 1-20 kJm -2 [2, 3, 12]. 
Mai and Atkins [9] make different assumptions about 
the energy storage in the legs of a tear test piece and 
predict that non-linear elasticity does affect the result 
of a tear test; they argue that under some circum- 
stances a J-shaped stress strain curve results in a 
higher tearing load than for a linear material with the 
same fracture toughness, R. Observations on the 
actual tearing behaviour of four biological materials 
[13] have been interpreted as supporting Mai and 
Atkins' assumption that the effects of energy storage in 
the legs of a tear test piece are not negligible. Mai and 
Atkins' conclusion, that biological materials with 
J-shaped curves are resistant to rupture because of 
their low stiffness at low/medium extensions, radically 
differs from that of Kendall and Fuller. However, they 
agreethat  the choice of_definition of what is meant by 
non-linear materials "being more difficult to tear" is 
not an obvious one. Mai and Atkins ask "Do we mean 
bigger fracture loads at constant toughness? Or 
greater failure strains at constant toughness?". Com- 
parison of the findings of these two continuum-based 
analyses [8, 9] to Smith's discrete lattice models [5, 6] 
serve to exemplify this difficulty; Smith emphasizes the" 
effect of non-linearity on fracture strain, whereas 
Kendall and Fuller and Mai and Atkins argue in 
terms of relationships between R and fracture stress as 
a function of stress-strain curve shape. 

The aim of this paper is to approach the question of 
the effects of non-linear stress-strain behaviour on 
fracture by explicitly examining the relationships be- 
tween fracture stress and crack length, and between 
fracture strain and crack length, as functions of the 
shape of the stress-strain curve. Various sheet rubbers 
will be used as uniform and homogeneous model 
materials. 

Notch sensitivity is usually described in terms of the 
way in which fracture stress decreases with crack 
length (e.g. Kelly [14]). In the analysis presented here 
it will be emphasized that the concomitant decrease of 
fracture strain with crack length can show a different 
pattern of notch sensitivity to that of stress in non- 
linear materials, and that these differences may be 
useful in deciding under what circumstances a non- 
linear material with either a higher fracture strain, or a 
higher fracture stress, is more "difficult" to break. 

2. Theoretical analysis 
A homogeneous, isotropic continuum material with a 
stress-strain relationship of ~ = k~" is assumed. The 
changes in elastic strain energy, U, on extension of an 
existing crack length a under fixed grip conditions will 
be considered for both notch-sensitive and notch- 
insensitive cases, as depicted in Fig. 2a and b, respect- 
ively. An external load, P, is applied in each case to 
open the crack in mode I, and the point of application 
of the load has a displacement u. 

Figure 2 Single-edge notched specimens of (a) a notch-sensitive and 
(b) a notch insensitive non-linear material. Unshaded areas repres- 
ent strain energy-free zones surrounding the notch. 

2.1. Notch-sensitive case (Fig. 2a) 
In this simplified model th e presence of a pre-existing 
edge notch of length a is assumed to give rise to a 
stress-free zone (unshaded area) that is approximately 
semicircular. The total strain energy, U, in the shaded 
area is given by 

(fo ) U = r~d~ x shaded volume (1) 

where af is the macroscopic failure strain, i.e. 

I~ n + l  / 

(2) 

where t is the specimen thickness. 
The fracture toughness is given by, 

R - (3) 

where A is the crack area ( = at) 

ks~+ l ~a 
�9 ' .  R - ( 4 )  

n + l  

Taking R as constant 

~f ~ (5)  

For the linear case (n = 1) this yields af ~ a -~ as 
expected. 

The failure stress, 

~f = k ~  (6) 

and substituting a~ + 1 = (eYe~k(. + 1/.) into Equation 4 
gives 

(7) 
n + l  

Taking R as a constant 

~ f  oc - -  (8)  

For the linear case this gives cyf oc a -~ in agreement 
with linear elastic fracture mechanics. 
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2.2. N o t c h - i n s e n s i t i v e  case (F ig .  2b )  
In this case it is assumed that the unstressed zone 
(unshaded area) extends along the entire length, L, of 
the specimen for a width equal to a. Then by the same 
argument as above 

k ~ +  l L t ( W  - a) 
(9) 

n + l  
U 

and 

ka'~ +1 L t  
R - (10) 

n + l  

i.e. ae is independent of a for all values of n. It follows 
that the failure stress in the shaded region, the liga- 
ment failure stress, is also independent of a for all 
values of n, and the nominal breaking stress, ~f, is 
therefore proportional to 1 -  ( a / W ) .  This is the rela- 
tionship given by Kelly [14] for notch-insensitive 
materials; the present analysis shows that it applies to 
non-linear notch-insensitive materials also. 

Returning to the notch-sensitive case, the foregoing 
analysis predicts the following log-log relationships 
between o t and a and s t and a 

l n ~  t = k 1 - m l n a  (11) 

where m = n / (n  + 1) 

In  8f = k 2 - p l n a  (12) 

where p = l / ( n +  1), and where k t and k2 are 
constants. It should be noted that m + p = 1, and 
therefore there is a reciprocal relationship in the 
dependence of the two log-log gradients on n, i.e. that 
as n increases the gradient of the In crf versus In a plot 
increases, whilst the gradient of the In a t versus In a 
plot concomitantly decreases, and vice versa as n 
decreases. This is evident in Fig. 3, which shows the 
values of m and p as a function of n. Only at n = 1 does 
r e = p = 1 / 2 .  For  n < l ,  m < l / 2 < p  and for n > l ,  
m >  1/2 > p. 

These forms of relationship are implicit in previous 
analyses of fully plastic behaviour as a non-linearly 
elastic problem [15-17]. However, the aim of these 

previous exercises was to arrive at expressions for the 
strain energy release rate, G, or the J-integral. The aim 
here is to look explicitly at the way the shape of the 
stress-strain relationships affects the dependence of 
fracture stress and fracture strain on crack length, and 
so it is valid to draw these points out strongly in the 
present analysis. 

The applicability of the foregoing analysis can 
readily be tested by measuring cyr and ef as functions of 
a for materials that can be adequately described by the 
power-law model of non-linear stress-strain behavi- 
our, and comparing how well they fit the straight line 
plots predicted in Equations 11 and 12. Such tests are 
described below. 

3. Mater ials and methods 
Three types of rubber were obtained in large sheets of 
uniform thickness: butyl rubber (thickness 1.8 mm), 
silicone rubber (thickness 2.2 ram), and latex sheet 
(thickness 0.8 mm). Tensile test specimens were cut out 
from the sheets using a dumb-belled metal template as 
a guide. For  butyl and silicone rubber specimens, a 
dumb-belled template, with waisted region of width 
20 mm and length 90 mm was used. For latex rubber 
specimens a smaller template with a waisted region 
10 mm wide and 45 mm long was necessary in order to 
accommodate the high breaking strain of this material 
within the extension range of the materials testing 
machine used. All test specimens were cut with their 
long axis transverse to the roll direction of the sup- 
plied sheets, in order to avoid any possible anisotropy 
in the sheets. The actual widths, W, of the specimens 
were measured using either vernier calipers or a 
magnifying viewer with a calibrated eyepiece graticule. 
To act as targets for an infrared non-contacting 
extensometer used in all tensile tests, 2 mm diameter 
dots of self-adhesive infrared reflecting tape were pla- 
ced along the mid-region of each specimen, with 
centre-to-centre distances of 50mm in the case of 
butyl and silicone rubber specimens, and 25 mm in the 
case of latex specimens. 
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Figure 3 Pred i c t ed  va lues  of  g r a d i e n t s  m ( [ ] )  a n d  ( � 9  p versus  va lues  of  n. As n t ends  to zero,  m tends  to  zero  a n d  p to 1. As n tends  to  infinity,  

m tends  to  1 a n d  p to zero.  At  all va lues  of  n, m + p = 1. 
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3 . 1 .  S t r e s s - s t r a i n  a n d  r e s i l i e n c e  m e a s u r e m e n t s  

In order to test the applicability of the simple power- 
law model of non-linear stress-strain behaviour for 
each material, simple tensile tests were carried out, 
using an Instron 6022 fitted with pneumatic grips and 
a J.J. Lloyd infrared non-contacting extensometer. 
For butyl and silicone rubber specimens, a grip-to-grip 
separation of 110 mm and extension rate of 220 mm 
min - I  were employed, and for latex specimens a 
grip separation of 45 mm and extension rate of 
225 mm min-  1 were used. Measurements of stress and 
strain (as measured by non-contact extensometry of 
the infrared-tape markers in the parallel mid-region of 
the specimens) were taken. A number of specimens 
were unloaded at the same extension rates after reach- 
ing various load levels below the breaking point of 
the material. Resilience, measured as the energy under 
the unloading curve expressed as a percentage of the 
energy under the loading curve, was measured as a 
function of peak stress during the loading cycle. 

3.2. Notch-sensitivity tests 
Single-edge notches of various lengths were cut up to 
half way across the width in the mid-region of a 
number of dumb-belled specimens of each material. 
The lengths, a, of these notches were measured by a 
magnifying viewer with calibrated eyepiece graticule 
to the nearest 0.1 mm and expressed as a ratio (a/W) 
of the measured width of the specimen, W. Specimens 
were then extended to breaking point at the same 
extension rates as for the unnotched, stress strain test 
specimens above, and peak stresses and strain at peak 
stress (from the non-contacting extensometer) noted. 
All tensile tests were carried out at room temperature. 

4. R e s u l t s  
4.1. Stress-strain behaviour 
Fig. 4 shows log-log plots of stress-strain curves for 
(a) butyl, (b) silicone and (c) latex rubbers. The power- 
law model of non-linear behaviour predicts a straight 
line relationship, the gradient of the line being the 
value of the exponent, n. Butyl and silicone rubber can 
be seen to fit this model quite well, and the gradients of 
Fig. 4a and b correspond to n values of 0.534 and 
0.682, respectively. Fig. 4c shows that the power-law 
model does not describe the overall stress-strain beha- 
viour of latex rubber very well. At strains up to 400%, 
the log stress-log strain data fall on a good straight 
line (correlation coefficient 0.998) which corresponds 
to an r-shaped stress-strain curve, with n = 0.563. 
However, above strains of 400% the stress-strain 
behaviour becomes extremely J-shaped, with the 
log-log plot giving a very good fit in this upper region 
(R 2 = 0.988) to the power-law model with n = 4.15. 

4 . 2 .  N o t c h  s e n s i t i v i t y  

Fig. 5 shows plots of In fracture stress versus In a~ W 
on the left-hand side and In fracture strain versus In 
a~ W on the right-hand side for (a, b) butyl, (c, d) 
silicone and (e, f) latex rubbers. For  butyl and silicone 
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Figure 4 Log-log stress-strain plots for (a) butyl, (b) silicone and 
(c) latex rubbers. Straight lines drawn are regression fits of an 
exponential model with gradients stated; R 2 values are correlation 
coefficients for straight line fit. 

rubbers, these relationships are very well described by 
straight lines (R 2 > 0.9 in all four cases). The absolute 
value of the negative gradient of the In fracture stress 
versus In a~ W relationship is tess than 0.5, whereas the 
absolute value of the negative gradient of the In 
fracture strain versus in a~ W relationship is greater 
than 0.5 for both materials. The corresponding rela- 
tionships for latex rubber are much poorer straight 
line fits. For  latex, the absolute value of the negative 
gradient of the In fracture stress versus In a/W rela- 
tionship is greater than 0.5, whereas the absolute value 
of the negative gradient of the In fracture strain versus 
In a/W relationship is less than 0.5. 
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Figure 5 Log-log plots of (a, c, e) breaking stress versus a~ W and (b, d, f) breaking strain versus a/W, for (a, b) butyl rubber, (c, d) silicone 
rubber and (e, f) latex rubber. Straight lines shown are regression fits to the data with gradients and correlation coefficients (R z) as stated. 

4 . 3 .  Resi l ience  
Fig. 6 shows the resilience of the three rubbers as a 
function of peak stress in the loading cycle. In all cases, 
resilience falls appreciably as the material is unloaded 
from higher stresses. 

5. D i s c u s s i o n  
5.1. Fit between model and experimental 

data 
The experimental results show that the theoretical 
analysis of fracture stresses and strains as functions of 
crack length, and the power-law stress-strain model 
on which the analysis was based, fit the behaviour of 
butyl and silicone rubber very well. Fig. 4 shows that 
the power-law model fits the stress-strain behaviour of 
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the butyl and silicone rubbers reasonably, with cor- 
relation coefficients above 0.98. With these materials 
the In ~f versus In a/W and in ~f versus In a/W plots 
(Fig. 5) also give good straight line fits in accordance 
with Equations 11 and 12, with N 2 > 0.9 in each case. 
Table I shows a comparison between these measured 
gradients and those predicted by Equations 11 and 12, 
using the measured values of n from Fig. 4. The value 
of n is well below 1 for both of these materials, which 
the theoretical analysis predicts should result in a 
value for rn (gradient of the In ~f versus In a/W plot) 
below 0.5 and a value for p (gradient of the In af versus 
In a/W plot) above 0.5. Table I shows that this is the 
case, and moreover the actual values of m and p match 
the predicted values well. The analysis therefore ap- 
pears to be applicable to these materials. 



70 

60 

5o 
0 
C 

, m  

~. 4o 

30 

[ ]  
A 

[ ]  

[] 
�9 A 

I I I 

0 2 4 6 8 
Peak stress (MPa) 

Figure 6 Resilience (energy under unloading curve as a percentage 
of energy under loading curve) versus peak stress reached in loading 
cycle. (A) Silicone, ([]) butyl and (~) latex rubbers. 

Latex rubber is less well described by the power-law 
stress-strain model and also matches the non-linear 
notch sensitivity analysis less well. At extensions 
up to approximately 400% latex has an r-shaped 
stress-strain curve well described by a power-law 
model with n = 0.563 (R2=  0.998 for this lower re- 
gion only). At higher extensions the stress-strain curve 
sweeps rapidly upwards in a J-shaped form; this upper 
segment of the curve is well described by a power-law 
model with n = 4.15 (R 2 = 0.988). Visual observations 
of the edge-notched latex specimens suggested that the 
bulk of the test piece was operating in this upper 
region of the curve immediately prior to rupture. The 
value of n = 4.15 was therefore taken to be the most 
appropriate. Despite the high scatter in the in % 
versus In a~ W and In ~f versus In a / W  plots for latex, 
their gradients did show the trend predicted by the 
theoretical analysis, with m > 0.5 > p, as shown in 
Table I. The predicted values for m and p are, in fact, 
moderately close to their predicted values, but no 
great emphasis can be placed on this due to the high 
scatter in Fig. 5 for this material. It may be that other 
forms of stress-strain relationship would better de- 
scribe the properties of this material. For  example, 
Atkins and Mai [-t 1] proposed a sinh or cosh relation- 
ship. The power-law model was chosen here only for 
its simplicity and in order to relate this work to 
previous papers [-8, 9]; any integrable function could 
be substituted in the analysis given in Section 2. 

5.2. Assumpt ions  of the present analysis 
There is a general point to be made about the 
assumptions in the present analysis of an isotropic 

T A B LE I Fit between model and observed notch sensitivity 

material with a constant toughness, R, and J-shaped 
stress-strain behaviour at high uniaxial extensions. 
Mullins and Thomas [18] point out that, in general, 
very highly extensible rubbers show such a J-shaped 
upper region. This is because high strains align ini- 
tially random polymer chains along the stretching 
direction in an increasingly non-Gaussian distribu- 
tion. Natural rubbers such as latex also tend to strain- 
crystallize [19]. This aligmnent of initially random 
polymer networks results in strain-induced anisotropy 
in materials that are initially isotropic. Initially ran- 
dom networks of collagen molecules in dilute gelatin 
gels also show J-shaped stress-strain behaviour [20] 
which is thought to be due to strain-induced reori- 
entation of the molecular network. Thus it may be 
the general case that J-shaped stress-strain behaviour 
arising from reorientation of polymer networks inevit- 
ably means that, in such materials at high extensions 
ne~ir to breaking point, anisotropy must be developed 
even from initially isotropic conditions. This would 
complicate the simple, isotropic, analysis presented 
here. 

Strain-induced reorientation of collagen fibres in 
biological membranes such as blood vessel wall and 
skin have long been recognized as the cause of their 
J-shaped stress-strain curves. Bigi et al. [21] and 
Roveri et al. [22] have quantitatively matched 
changes in the angular distribution of collagen fibre 
networks to increasing stiffness on extension in a 
collagenous tissue. As well as undoubtedly producing 
increased anisotropy in these materials, this strain- 
induced reorientation may produce an increased frac- 
ture toughness local to the crack tip; Purslow et al. 
]-23] have shown that the stress and strain fields 
around a crack tip in biaxially stretched blood vessel 
wall act to align strongly collagen fibre bundles across 
the crack tip path, so presumably making further 
propagation more difficult. These features of J-shaped 
stress-strain behaviour of biological materials may 
generally reduce the applicability of so simple an 
analysis as presented here, but the present work does 
at least give some broad indications of the trend in 
notch-sensitivity to be expected from non-linear ma- 
terials. Another criticism of the simplified models 
presented here concerns the assumption in the notch- 
insensitive case of a homogeneous, isotropic material. 
In practice, notch-insensitivity is usually only dis- 
played by anisotropic composite structures, and it 
may well be that only heterogeneous and anisotropic 
structures can show true notch-insensitivity. However, 
when looking at biological tissues it is obvious that 
these materials are, in fact, complex composite struc- 
tures at-many levels of organization, from the macro- 
scopic down to the molecular. 

Material n-value Gradient m Gradient p 

Predicted Observed Predicted Observed 

Butyl 0.534 0.341 0.379 0.621 0.675 
Silicone 0.682 0.405 0.458 0.595 0.583 
Latex 4.15 0.806 0.761 0.194 0.119 
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The theoretical analysis in Section 2 implicity as- 
sumes perfectly elastic behaviour. Fig. 6 shows that all 
the materials tested here are less than perfectly elastic, 
especially at high strains. The fact that the analysis 
presented does reasonably describe the notch-sensitiv- 
ity of these non-linear materials may therefore be 
fortuitous, but it is worth pointing out that previous 
analyses [15-17] of fracture energies of fully plastic 
behaviour have been based on a model of a fully 
elastic non-linear stress-strain curve, and that such an 
approach has been found to have validity as long as 
the load-extension relationship of a cracked specimen 
was a monotonically increasing curve [16]. In general 
terms, then, although the assumptions of a homogen- 
eous, isotropic material showing perfect elastic energy 
storage are not strictly applicable to real materials of 
an extensible, non-linear nature, it seems nevertheless 
that the analysis presented here has some degree of 
predictive validity and usefulness. It should be pointed 
out that this paper provides an experimental test of 
non-linear theory; previous analyses [1-7] were 
purely theoretical. 

5.3. Relationship of present analysis to 
previous work 

In their analysis of fracture in single-edge notched 
specimens of non-linear materials, Kendall and Fuller 
[8] use the Rivlin and Thomas [24] analysis for 
rubbers, i.e. that R = 2K(X)a W o. W o is the remote 
strain energy density in the test piece, which Kendall 
and Fuller calculate in the same form as Equation 4 
here. The factor K is a function of extension ratio X 
which Kendall and Fuller take as K(X) = k / ~  ~ from 
the work of Lake [25]. The value of k is just below n. 
Greensmith [26] shows that K(X) decreases from a 
value of about 3 at small strains to just below 2 at 
200% extension, and suggests that at small strains K 
should theoretically be close to ~ for an edge notch. 
Equation 4 here is equivalent to Kendall and Fuller's 
analysis except for n here being subsituted for the 
2K (~) term of Kendall and Fuller's result. The present 
analysis extends Kendall and Fuller's analysis specific- 
ally in discussion of concomitant changes in failure 
strains as well as changes in failure stress as n varies, 
and the possible significance of this, as discussed 
below. 

Smith [6] models a non-linear shear communi- 
cation between parallel elements in a material by 
considering a linear stress-strain relation that has a 
positive gradient only above a critical strain. Below 
this strain the gradient is zero, i.e. there is no resistance 
tO extension. He argues that a more J-shaped curve, 
modelled by an increasing value of the critical strain, 
leads to a higher failure strain. This finding is similar 
to Smith's earlier analysis [5] where higher macro- 
scopic failure strains result from increasing the ratio of 
the stiffness in the highly strained crack tip region to 
the stiffness further along the lattice chains of a two- 
dimensional lattice model. Both of these results are 
not inconsistent with the present analysis, which pre- 
dicts that an increase in n results in an increased ef at a 
given crack length. However, Smith's interpretation 
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[5, 6] that such increases in failure strain are indicative 
of increasing resistance to crack propagation is open 
to question; as shown here, a model can be erected 
where increasingly J-shaped stress-strain behaviour 
can lead to a higher fracture strain at a given crack 
length whilst fracture toughness, R, remains constant. 
Whilst it is of interest to hypothesize on the possible 
effects of increasing non-linear effects on R, it is a 
practical point that real materials vary in stress-strain 
curve shape only because of variations in structure 
and in structural mechanisms of deformation, and 
such variations have their own role in determining the 
toughness of a material. When considering a real (and 
possibly non-linear) material with a given toughness, 
the analysis presented here has practical significance 
in that it predicts the fracture stress and strain of a 
cracked specimen. The assumption of constant R also 
makes the present work not directly comparable to 
that of Smith [7], where he finds that a J-shaped 
stress-strain behaviour increases the effective work 
of fracture of a two-dimensional lattice model by 
widening the lattice-trapping regime. 

It is interesting to note that Smith [7] concludes 
that, although effective, macroscopic values of R may 
be affected by non-linearity on this non-continuum 
model, conventional measurements of the critical 
stress intensity factor, Kc, could still be valid. It is an 
obvious consequence of the analysis presented here 
that Kc, although a constant for a linear material, 
characteristic of its toughness, is not a constant for 
non-linear materials. In the linear case, because frac- 
ture stress is proportional to the square root of crack 
length, then 

(Yf( 'Ka)  1/2 = constant = Kc (13) 

But it has been shown above that when n ~ 1 then 
cyf ~ (a) -~ For the non-linear case 

n 

~ f a  ( n + l )  = constant (constant = tP~,say) (14) 

and this is obviously borne out by the experimental 
data in Fig. 5, where all of the In ~f versus In a~ W 
plots have gradients that deviate from - 0 . 5  in the 
predicted manner. In general crf a 1/2 will be a non- 
constant function of a for all n except n = 1. Therefore, 
whilst We is a generally applicable (linear and non- 
linear) stress intensity factor, Ko as conventionally 
defined in Equation 13 is valid only for the linear case 
and is not constant for non-linear cases, contrary to 
Smith's interpretation [7]. 

5.4. Significance - strategies for extension 
versus load-limited applications 

The arguments presented here reinforce the opinions 
of Kendall and Fuller [8] and Mai and Atkins [9] that 
great care must be exercised when interpreting any 
effects of non-linearity in relation to the "difficulty" of 
breaking a material. As the present analysis clearly 
shows, non-linear effects which raise the failure strain 
for a given crack length at constant toughness may 
concomitantly decrease the failure stress. In general, 
fracture stress and strain do not follow identical rela- 
tionships with crack length as expected from linear 



theory, but are affected in some reciprocal way to each 
other by increasing non-linearity in the stress-strain 
relationship. These effects can be independent of any 
differences in the toughness as defined by R, as shown 
by the present analysis. 

It is possible, on the basis of these different sensitivi- 
ties of fracture stress and fracture strain to crack 
length, to conceive Of "design strategies" in terms of 
the stress-strain behaviour of a material in order to 
make fracture more difficult under different conditions 
of test or use. Consider Fig. 7. Fig. 7a shows the 
stress-strain curves up to fracture as a function of 
increasing crack length in the case where n > 1, i.e. 
J-shaped behaviour. Analysis predicts, and experi- 
mental results show, that as a increases, breaking 
stress drops off very rapidly, so that for a lengthy 
crack the breaking stress has fallen very considerably 
from that of an unnotched sample. However, the 
diminution in failure strains resulting from the same 
increase in crack length is much smaller. This type of 
behaviour would be a good strategy to resist fracture 
in service conditions that were entirely displacement 
controlled. For  example, the skin covering a knee joint 
is strained by an amount  fixed by the flexure of the 

U) 

. . . . . . . . . . . . . . . . . . . . . . . .  l ]arge ~ i  
Lran0 e / , ,  
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'----,-- small range 

(a) Strain 

U) 

�9 . . . . . .  
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Figure 7 Stress-strain curves to fracture for (a) J-shaped materials 
(n > 1) and (b) r-shaped materials (n < 1). Increasing crack length 
results in greater decreases in fracture stress than fracture strain in 
(a), and vice versa in (b). 

knee joint. If the skin is cut or torn, then it is desirable 
that the tear does not propagate whenever the knee 
bends, and experience tells us that we can walk and 
run normally without the likelihood of knee flexure 
resulting in the propagation of a cut. Because the 
failure strain of highly J-shaped materials such as skin 
is relatively insensitive to the presence of notches, this 
analysis shows why tears in the skin over a knee joint 
may have to be very large indeed before the fracture 
strain of the "cracked" skin would drop sufficiently for 
it to be in danger of tearing, so long as it is the 
extension of the skin, and not the resulting loads 
generated, that are the critical factor. 

Fig. 7b shows the stress-strain curves to fracture of 
an r-shaped material (n < 1) as crack length increases. 
In this case, an increase in a brings about a large 
decrease in the fracture strain, but only a small de- 
crease in the fracture stress. By a reciprocal argument, 
materials with r-shaped stress-strain curves may well 
be better suited than linear or J-shaped materials to 
load-defined applications. In terms of biological ma- 
terials, some hard tissues such as bone [-27] and shells 
of molluscs [28] can have this sort of stress-strain 
relationship, although a non-reversible one in 
these instances. Antler has a reversible r-shaped 
stress-strain curve up to approximately 3% extension, 
but increasing irreversibility occurs at strains up to 
8% [29]. 
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